Electroweak Physics Open Questions and New Ideas

Jorge de Blas

Institute for Particle Physics Phenomenology

Durham University

European Strategy Update results

The starting point for the Snowmass studies

<u>European Strategy for Particle Physics:</u> the cornerstone of Europe's decision-making process for the long-term future of the field

Guide through the statements

- 2 statements on Major developments from the 2013 Strategy
- a) Focus on successful completion of HL-LHC upgrade remains a priority
- b) Continued support for long-baseline experiments in Japan and US and the Neutrino Platform
- 3 statements on General considerations for the 2020 update
- a) Preserve the leading role of CERN for success of European PP community
- b) Strengthen the European PP ecosystem of research centres
- c) Acknowledge the global nature of PP research
- 2 statements on High-priority future initiatives
- a) Higgs factory as the highest-priority next collider and investigation of the technical and financial feasibility of a future hadron collider at CERN
- b) Vigorous D&D on innovative accelerator technologies

Letters for itemizing the statements are introduced for identification, do not imply prioritization

- 4 statements on Other essential scientific activities
- a) Support for high-impact, financially implementable, experimental initiatives world-wide
- b) Acknowledge the essential role of theory
- c) Support for instrumentation R&D
- d) Support for computing and software infrastructure
- 2 statements on Synergies with neighbouring fields
- a) Nuclear physics cooperation with NuPECC

However, no consensus on the type of Higgs factory (Circular or Linear)

- D) Kelations with European commission
- c) Open science
- 4 statements on Environmental and societal impact
- a) Mitigate environmental impact of particle physics
- b) Investment in next generation of researchers
- c) Knowledge and technology transfer
- d) Cultural heritage: public engagement, education and communication

H. Abramowicz's talk at the CERN council meeting of June 19, 2020 See also F. Giannotti's talk on June 29, 2020 for further remarks

European Strateg

- Decisions based on the results of the studies of the different Working Groups formed to assist the Physics Preparatory Group (PPG) in evaluating the physics potential of the different future experiments.
- The Higgs@Future Colliders WG was formed by RECFA for this purpose, to help in areas related to Higgs/EW physics. The main outcome of the WG studies is collected in the report in JHEP 01 (2020) 139 (1905.03764 [hep-ph]) and summarized in the Electroweak Physics chapter of the Physics Briefing Book

Higgs Boson studies at future particle colliders

J. de Blas $^{1.2}$, M. Cepeda 3 , J. D'Hondt 4 , R. K. Ellis 5 , C. Grojean $^{6.7}$, B. Heinemann $^{6.8}$, F. Maltoni $^{9.10}$, A. Nisati $^{11.*}$, E. Petit 12 , R. Rattazzi 13 , and W. Verkerke 14

¹Dipartimento di Fisica e Astronomia Galileo Galilei, Universita di Padova, Via Marzolo 8, I-35131 Padova, Italy ²Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Padova, Via Marzolo 8, I-35131 Padova, Italy ³Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Avda. Complutense 40, 28040. Madrid. Spain

⁴Inter-University Institute for High Energies (IIHE), Vrije Universiteit Brussel, Brussels, 1050, Belgium ⁵IPPP, University of Durham, Durham DH1 3LE, UK

⁶Deutsches Elektronen-Synchrotron (DESY), Hamburg, 22607, Germany

⁷Institut für Physik, Humboldt-Universität, Berlin, 12489, Germany

⁸Albert-Ludwigs-Universität Freiburg, Freiburg, 79104, Germany

Ocentre for Cosmology, Particle Physics and Phenomenology, Université catholique de Louvain, Louvain-la-Neuve, 1348, Belgium

¹⁰Dipartimento di Fisica e Astronomia, Università di Bologna and INFN, Sezione di Bologna, via Irnerio 46, 40126 Bologna, Italy

11 Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma, P.le A. Moro 2, I-00185 Roma, Italy
12 Aix Marseille Univ. CNRS/IN2P3. CPPM. Marseille. France

¹³Theoretical Particle Physics Laboratory (LPTP), EPFL, Lausanne, Switzerland

¹⁴Nikhef and University of Amsterdam, Science Park 105, 1098XG Amsterdam, the Netherlands

*Corresponding author

ABSTRACT

arXiv:1905.03764v2

This document aims to provide an assessment of the potential of future colliding beam facilities to perform Higgs boson studies. The analysis builds on the submissions made by the proponents of future colliders to the European Strategy Update process, and takes as its point of departure the results expected at the completion of the HL-LHC program. This report presents quantitative results on many aspects of Higgs physics for future collider projects of sufficient maturity using uniform methodologies. A first version of this report was prepared for the purposes of discussion at the Open Symposium in Granada (13-16/05/2019). Comments and feedback received led to the consideration of additional run scenarios as well as a refined analysis of the impact of electroweak measurements on the Higgs coupling extraction.

CERN-ESU-004 30 September 2019

Physics Briefing Book

Input for the European Strategy for Particle Physics Update 2020

Electroweak Physics: Richard Keith Ellis¹, Beate Heinemann^{2,3} (Comveners)

Jorge de Blas^{4,5}, Maria Cepeda⁶, Christophe Grojean^{2,7}, Fabio Maltoni^{8,9}, Aleandro Nisati¹⁰,

Elisabeth Petit¹¹, Riccardo Rattazzi¹², Wouter Verkerke¹³ (Contributors)

Strong Interactions: Jorgen D'Hondt ¹⁴, Krzysztof Redlich ¹⁵ (Conveners)
Anton Andronni-6¹, Ferenc Siklér ¹⁷ (Scientific Secretaries)
Nestor Armesto ¹⁸, Daniel Boer¹⁹, David d'Enterria ²⁰, Tetyana Galatyuk ²¹, Thomas Gehrmann ²²,
Klaus Kirch ²³, Uta Klein ²⁴, Jean-Philippe Lansberg ²⁵, Gavin P. Salam ²⁶, Gunar Schnell ²⁷,
Johanna Stachel ²⁸, Tanguy Pierog ²⁰, Hartmut Wittig ³⁰, Uts Wiedemann ²⁰ (Contributors)

Flavour Physics: Beten Gaveta, Antonio Zoccoli (Conveners)
Sandra Malvezzi³, Ana Teixeira⁴, Jure Zupani³ (Scientific Secretaries)
Daniel Aloni³⁶, Augusto Ceccucci²⁰ Avital Dery³⁶ Michael Dine⁵⁷, Svetlana Fajfer³⁸, Stefania Gori³⁷,
Gudrun Hiller³⁹, Gino Isidori²², Yoshikata Kuno⁴⁰, Alberto Lusiani⁴¹, Yosef Nir³⁶,
Marie-Helene Schune⁴², Marco Sozzi⁴³, Stephan Paui⁴⁴, Carlos Pena³¹ (Contributors)

Neutrino Physics & Cosmic Messengers: Stan Bentvelsen⁴⁵, Marco Zito^{46,47} (Conveners) Albert De Rocek ²⁰, Thomas Schwetz²⁷ (Scientific Secretaries) Bonnie Fleming ⁴⁸, Francis Halzen⁴⁹, Andress Haung ⁵³, Marck Kowalski², Susanne Mertens⁴⁴, Mauro Mezzetto⁵, Silvia Pascoli⁵⁰, Bangalore Sathyaprakash⁵¹, Nicola Serra²² (Contributors)

Beyond the Standard Model: Gian F. Giudicc²⁰, Paris Sphicas^{20,52} (Conveners)

Juan Alcaraz Maestre⁶, Caterina Dogliom⁵³, Gaia Lanfranchi^{20,54}, Monica D'Onofrio²⁴,

Matthew McCullough²⁰, Gilad Perez³⁶, Philipp Roloff²⁰, Veronica Sanz⁵⁵, Andreas Weiler⁴⁴,

Andrea Wulzer⁴, 12,20 (Contributors)

Dark Matter and Dark Sector: Shoji Asai⁵⁶, Marcela Carena⁵⁷ (Conveners)
Babette Döbrich²⁰, Caterina Doglioni⁵³, Joerg Jaeckel²⁸, Gordan Kmjaic⁵⁷, Jocelyn Monroe⁵⁸,
Konstantinos Petridis⁵⁹, Christoph Weniger⁶⁰ (Scientific Secretaries/Contributors)

Accelerator Science and Technology: Caterina Biscan⁶¹, Leonid Rivkin⁶² (Conveners)

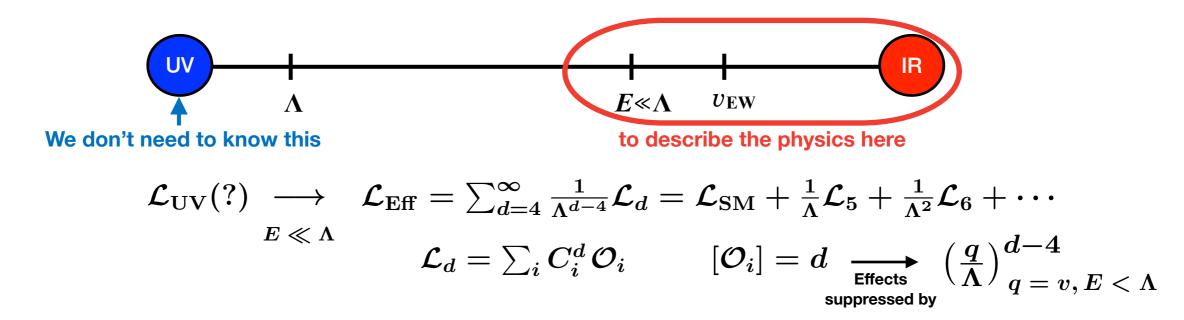
Philip Burrows²⁶, Frank Zimmermann²⁰ (Scientific Secretaries)

Michael Benedikt²⁰, Pierluigi Campana⁵⁴, Edda Gschwendtner²⁰, Erk Jensen²⁰, Mike Lamont²⁰,

Wim Leemans², Lucio Rossi²⁰, Daniel Schulte²⁰, Mike Seidel⁶², Vladimir Shiltsev⁶³,

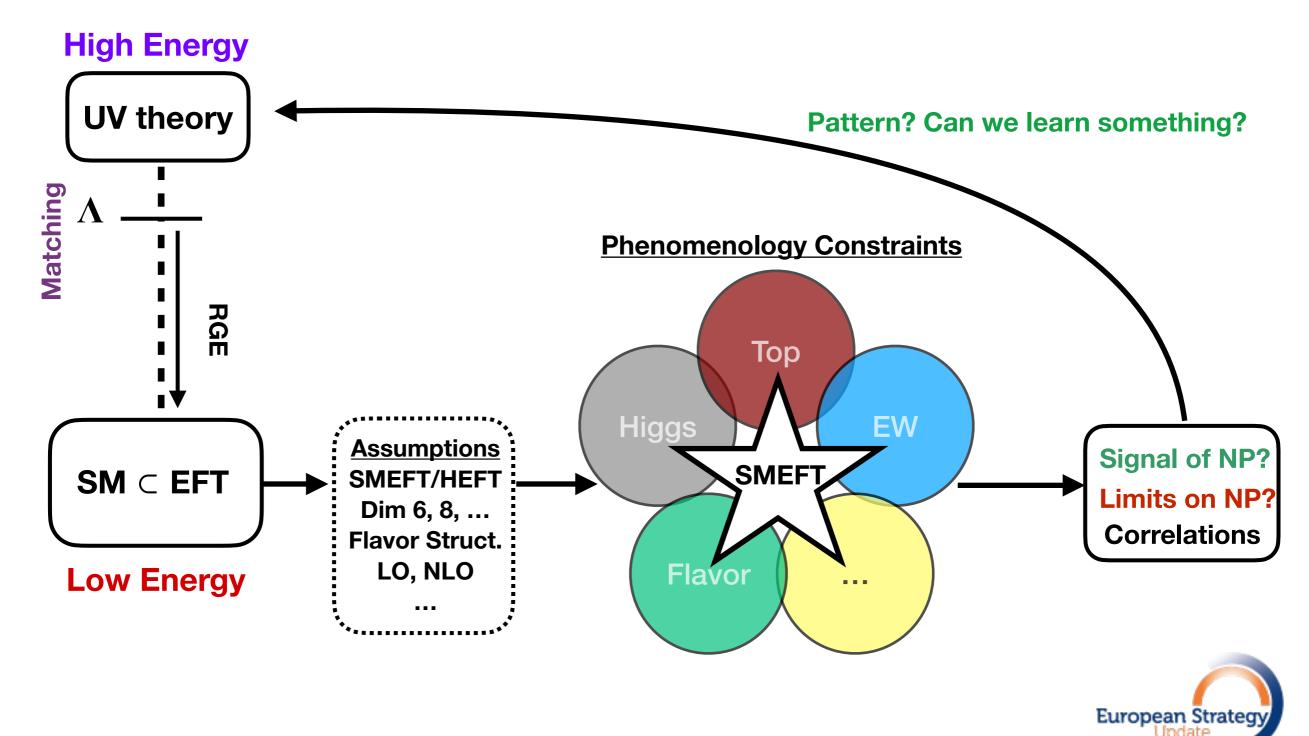
Steinar Stapnes²⁰, Akira Yamamnot^{20,64} (Contributors)

Instrumentation and Computing: Xinchou Lou⁶⁵, Brigitte Vachon⁶⁶ (Conveners)

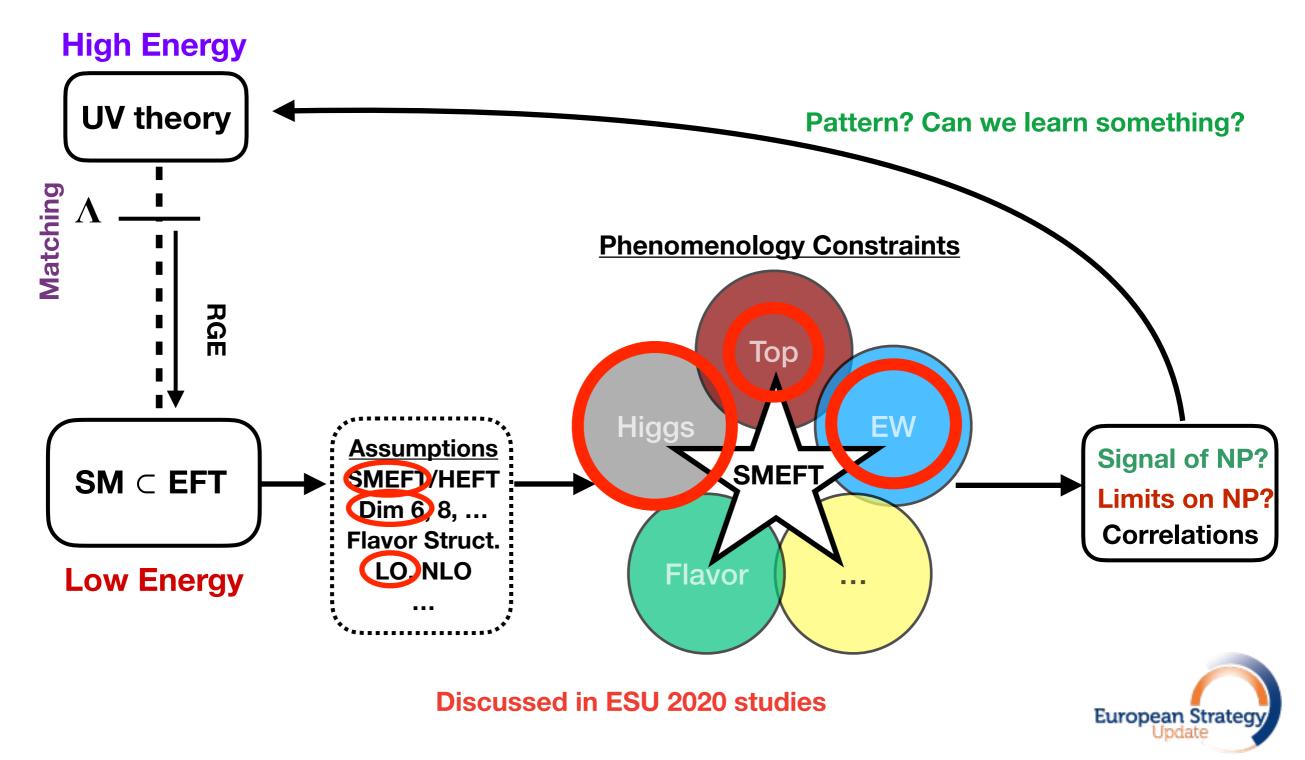

Roger Jones⁶⁷, Emilia Leogrande⁵⁰ (Scientific Secretaries)

Ian Bird⁵⁰, Simone Campana⁵⁰, Ariella Cattai⁵⁰, Didier Contardo⁶⁸, Cinzia Da Via⁶⁹, Francesco Forti⁷⁰,
Maria Girone⁵⁰ (Matthias Kasemann⁵, Lucie Linssen⁵⁰, Fifs Sefkow⁵, Grame Stewart⁵⁰ (Contributory)

Editors: Halina Abramowicz⁷¹, Roger Forty²⁰, and the Conveners

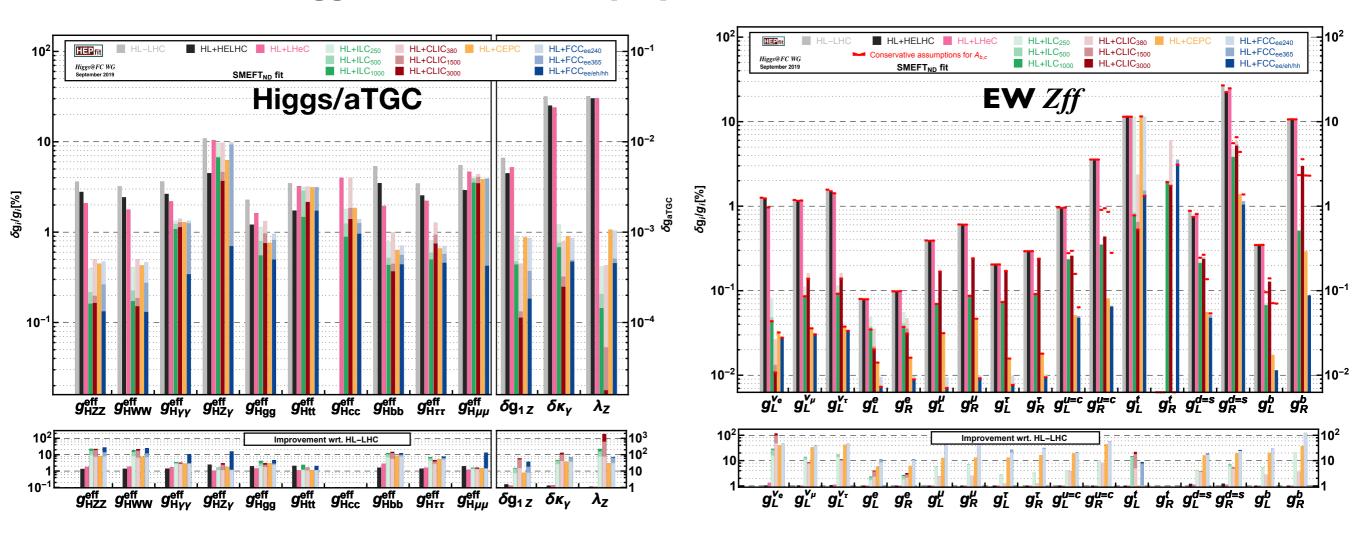


 For the purpose of this talk and the Snowmass 2021 activities, the relevant part of these results are those related to the SMEFT studies



- SMEFT ⇒ General description of BSM deformations compatible with assumptions:
 - √ Heavy new physics + decoupling
 - ✓ SM particles and symmetries at low energies. Assume Higgs belongs to a $SU(2)_L$ doublet H (+ analytic in H=0)
 - ✓ Power counting: operator expansion in canonical mass dimension
- Higgs prospects also studied within the K framework (not shown in this talk)

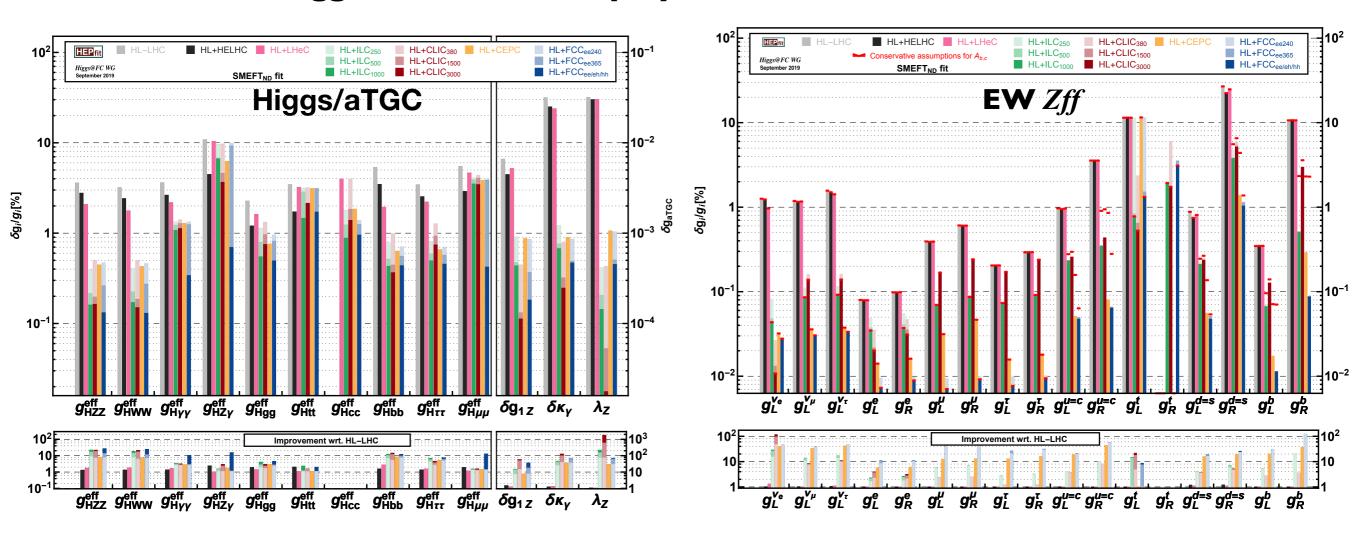
 For the purpose of this talk and the Snowmass 2021 activities the relevant part of these results are those related to the SMEFT studies



 For the purpose of this talk and the Snowmass 2021 activities the relevant part of these results are those related to the SMEFT studies

Snapshot of available results

EW/Higgs and their interplay studied within SMEFT framework



- Dimension 6 SMEFT fit to Higgs + EW (EWPO and aTGC) + Top (Ztt)
- Results projected into "effective couplings" for comparison of collider capabilities:

$$g_{HX}^{ ext{eff 2}} \equiv rac{\Gamma_{H o X}}{\Gamma_{H o X}^{ ext{SM}}} \qquad \Gamma_{Z o e^+e^-} = rac{lpha\,M_Z}{6\sin^2 heta_w\cos^2 heta_w} (|g_L^e|^2 + |g_R^e|^2), \qquad A_e = rac{|g_L^e|^2 - |g_R^e|^2}{|g_L^e|^2 + |g_R^e|^2} \qquad ext{European Strategy}$$

Snapshot of available results

EW/Higgs and their interplay studied within SMEFT framework

- For more details on these studies see C. Grojean's talk on EF01 kickoff meeting on May 13, 2020, or my own on the EF04 meeting on June 4, 2020
- Results also available for SILH-like EFT (not shown in this talk)

Snowmass 2021

Some relevant topics/studies post ESU 2020

Important topics not covered in ESU studies

Some topics related to EW physics

EW precision observables:

- ✓ Detailed assessment of impact of SM uncertainties for EWPO in SMEFT fits.
- \checkmark Clarify systematics for heavy flavor observables (A_q, R_q) .
- \checkmark Exploit EW measurements outside the Z-pole (low and high energy): requires adding 4-fermion operators into the global fit.
- √ Flavor (and CP violation): not explored in the ESU SMEFT fits.

Multi-boson processes:

- ✓ Full EFT studies of $e^+e^- \rightarrow W^+W^-$. Use of "optimal" observables.
- \checkmark High-E probes of EFT effects that grow with the energy.
- √ Vector boson scattering: not included in ESU studies.

• Interplay EW/Higgs/Top: Top sector only explored superficially:

- √ Consider effects from 4-fermion operators or top dipole operators.
- √ Exploit NLO effects of Top couplings in H/EW.

SMEFT assumptions:

- ✓ Impact of SMEFT uncertainties: NLO, (dim-6)² vs. dim 8, ...
- √ Non-universality: combine with flavor data to explore more flavor BSM scenarios

EW Physics at Snowmass 2021

Electroweak precision observables

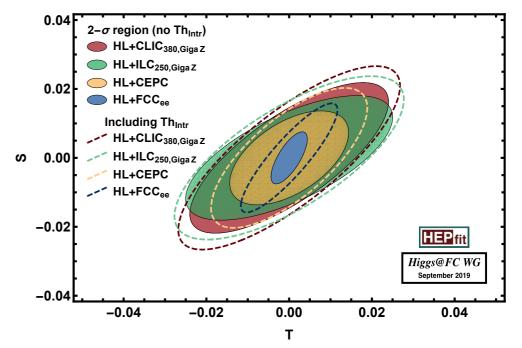
Electroweak precision observables in the SM

Impact of SM theory uncertainties of SM calculations of EWPO:

	experimental accuracy			intrinsic theory uncertainty		
	current	ILC	FCC-ee	current	current source	prospect
$\Delta M_{ m Z} [{ m MeV}]$	2.1	_	0.1			
$\Delta\Gamma_{ m Z}[{ m MeV}]$	2.3	1	0.1	0.4	$\alpha^3, \alpha^2\alpha_s, \alpha\alpha_s^2$	0.15
$\Delta \sin^2 \theta_{\rm eff}^{\ell} [10^{-5}]$	23	1.3	0.6	4.5	$\alpha^3,\alpha^2\alpha_{\rm s}$	1.5
$\Delta R_{\rm b}[10^{-5}]$	66	14	6	11	$\alpha^3,\alpha^2\alpha_{\rm s}$	5
$\Delta R_{\ell}[10^{-3}]$	25	3	1	6	$\alpha^3,\alpha^2\alpha_{\rm s}$	1.5
A. Freitas et al., arXiv: 1906.05379 [hep-ph]						

Current: Full 2-loop corrections (Not enough for future Exp. precision) Π

Prospects: Extrapolation assuming EW & QCD 3-loop corrections are known


Technically challenging but feasible

Only briefly explored in ESU studies: Future projections still a limiting factor

68% and 95% prob. region 68% and 95% prob. regions O HL-LHC HL-LHC ─ HL+FCC-ee HL+CEPC HL+FCC-ee (no Th_{intr}) HL+CEPC (no Th_{intr}) Exp. projections Exp. projections **HEP**fit Higgs@FC WG September 2019 80.34 M_W [GeV] 180 68% and 95% prob. regions 180 68% and 95% prob. regions C HL-LHC O HL-LHC → HL+ILC_{250,GigaZ} ■ HL+CLIC_{380,GigaZ} HL+CLIC_{380,GigaZ} (no Th_{Intr} HL+ILC_{250,GigaZ} (no Th_{Intr}) Exp. projections **HEP**fit Higgs@FC WG 80.38 80.40

BSM: Oblique parameters

Need to study the impact on all directions in the SMEFT fits

HEPfit

Higgs@FC WG

HEPfit

Higgs@FC WG

80.38

Electroweak precision observables in the SM

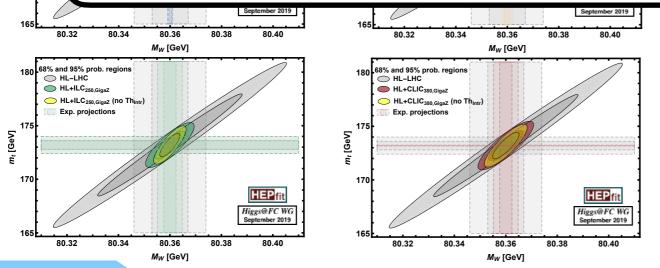
Impact of SM theory uncertainties of SM calculations of EWPO:

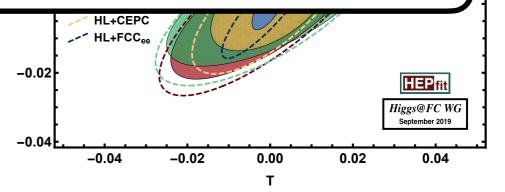
	experimental accuracy			intrinsic theory uncertainty		
	current	ILC	FCC-ee	current	current source	prospect
$\Delta M_{ m Z} [{ m MeV}]$	2.1	_	0.1			
$\Delta\Gamma_{ m Z}[{ m MeV}]$	2.3	1	0.1	0.4	$\alpha^3, \alpha^2\alpha_s, \alpha\alpha_s^2$	0.15
$\Delta \sin^2 \theta_{\rm eff}^{\ell} [10^{-5}]$	23	1.3	0.6	4.5	$lpha^3, lpha^2 lpha_{ m s}$	1.5

Current: Full 2-loop corrections (Not enough for future Exp. precision)

Prospects: Extrapolation assuming EW & QCD 3-loop corrections are known

SM uncertainties on WW production?

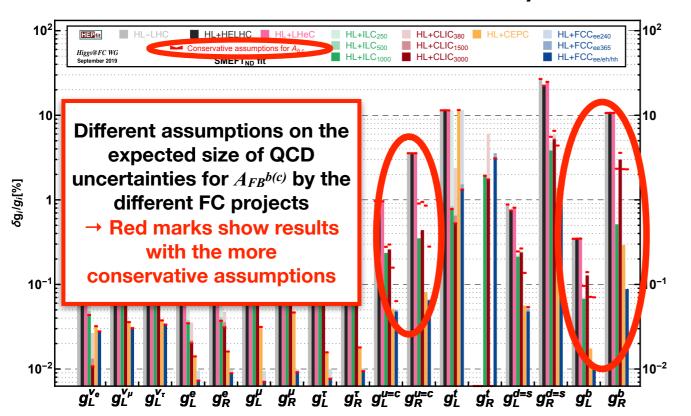

Studied at threshold (relevant for W mass measurement):

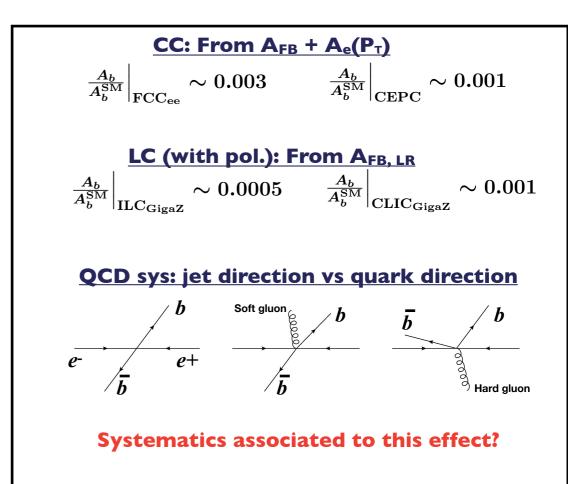

 $\Delta \sigma_{\rm N^3LO} \approx {\rm few} \times 0.01\% \times \sigma_{\rm Born}$ A. Blondel et al., arXiv: 1905.05078 [hep-ph]

 $\Delta \sigma_{\rm NNLO} \approx 0.1\% \times \sigma_{\rm Born}$

 \rightarrow $\Delta M_{\rm W} = (0.15 - 0.45) \text{ MeV}$

Effect of SM uncertainty in $e^+e^- \rightarrow 4f$ above WW threshold? Relevant for extraction of, e.g., aTGC




Need to study the impact on all directions in the SMEFT fits

sible

Electroweak precision observables at the Z-pole

- EWPO at FC (in general) systematics dominated ⇒ Projections for future sensitivity to BSM deformations depends on assumptions for such systematics
- Several places where clarifications/consensus are needed:
 - Hadronic forward-backward asymmetries

Other examples: leptonic forward-backward asymmetries:

$$\left. rac{\delta A_{FB}^{\mu}}{A_{FB}^{\mu,\mathrm{SM}}}
ight|_{\mathrm{FCC-ee}} \sim 5.4 imes 10^{-4}$$

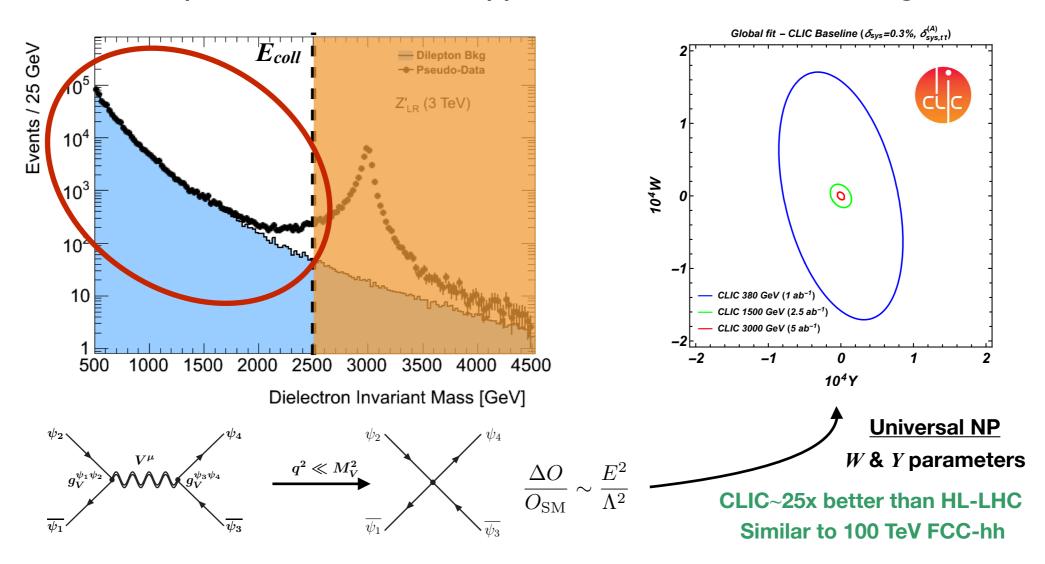
$$\left. rac{\delta A_{FB}^{\mu}}{A_{FB}^{\mu,\mathrm{SM}}}
ight|_{\mathrm{CEPC}} \sim 4.6 imes 10^{-3}$$

Order of magnitude difference!

Electroweak precision observables at the Z-pole

- EW factories also offer opportunities for flavor measurements:
 - √ Tera Z: ~10¹² Z decays into bb to test rare b-hadron decays, 10¹¹ T pairs for tests of LFV, limits on LFV decays of the Z,...

Order of magnitude estimates available, e.g., from CEPC CDR Vol. 2 (arXiv: 1811.10545 [hep-ex])


Observable	Current sensitivity	Future sensitivity	Tera- $oldsymbol{Z}$ sensitivity
$BR(B_s \to ee)$	$2.8 \times 10^{-7} \text{ (CDF) [438]}$	$\sim 7 \times 10^{-10} \text{ (LHCb) [435]}$	$\sim \text{few} \times 10^{-10}$
$BR(B_s \to \mu\mu)$	$0.7 \times 10^{-9} \text{ (LHCb) [437]}$	$\sim 1.6 \times 10^{-10} \text{ (LHCb) [435]}$	$\sim \text{few} \times 10^{-10}$
$BR(B_s \to \tau \tau)$	$5.2 \times 10^{-3} \text{ (LHCb) [441]}$	$\sim 5 \times 10^{-4}$ (LHCb) [435]	$\sim 10^{-5}$
R_K, R_{K^*}	$\sim 10\%$ (LHCb) [443, 444]	~few% (LHCb/Belle II) [435, 442]	∼few %
${\rm BR}(B\to K^*\tau\tau)$	_	$\sim 10^{-5}$ (Belle II) [442]	$\sim 10^{-8}$
${\rm BR}(B\to K^*\nu\nu)$	4.0×10^{-5} (Belle) [449]	$\sim 10^{-6}$ (Belle II) [442]	$\sim 10^{-6}$
$BR(B_s \to \phi \nu \bar{\nu})$	$1.0 \times 10^{-3} \text{ (LEP) [452]}$	_	$\sim 10^{-6}$
$BR(\Lambda_b \to \Lambda \nu \bar{\nu})$	_	-	$\sim 10^{-6}$
$\overline{BR(\tau \to \mu \gamma)}$	4.4×10^{-8} (BaBar) [475]	$\sim 10^{-9}$ (Belle II) [442]	$\sim 10^{-9}$
$BR(\tau \to 3\mu)$	2.1×10^{-8} (Belle) [476]	$\sim \text{few} \times 10^{-10} \text{ (Belle II) [442]}$	$\sim \text{few} \times 10^{-10}$
$\frac{\mathrm{BR}(\tau \to \mu \nu \bar{\nu})}{\mathrm{BR}(\tau \to e \nu \bar{\nu})}$	$3.9 \times 10^{-3} (\mathrm{BaBar}) [464]$	$\sim 10^{-3}$ (Belle II) [442]	$\sim 10^{-4}$
$BR(Z \to \mu e)$	$7.5 \times 10^{-7} \text{ (ATLAS) [471]}$	$\sim 10^{-8}$ (ATLAS/CMS)	$\sim 10^{-9} - 10^{-11}$
${\rm BR}(Z\to \tau e)$	$9.8 \times 10^{-6} \text{ (LEP) [469]}$	$\sim 10^{-6}$ (ATLAS/CMS)	$\sim 10^{-8} - 10^{-11}$
$BR(Z \to \tau \mu)$	$1.2 \times 10^{-5} \text{ (LEP) } [470]$	$\sim 10^{-6}$ (ATLAS/CMS)	$\sim 10^{-8} - 10^{-10}$

- √ Sensitivity at Giga Z?
- ullet EW measurements at **hadrons colliders**. Inputs for ESU studies limited to W mass and effective angle at HL-LHC:
 - ✓ HL-LHC: Γ_W ?
 - ✓ Tests of lepton universality: Current LHC measurements of $W\rightarrow l_1 \nu/W\rightarrow l_2 \nu$ competitive (or even better) than LEP2. What is the ultimate precision at the end of LHC era? Projections at high-E pp colliders?

Electroweak measurements above the Z-pole

• EW measurements of $e^+e^- \rightarrow ff$ at high-E sensitive to different effects than Z-pole data. SMEFT picture:

4 fermion operators \Rightarrow effects suppressed at Z-resonance but grow with E!

• **ESU 2020:** This type of effects only studied for the particular case of oblique new physics (W & Y pars). Results available for CLIC and ILC. We estimated them for FCCee and CEPC

Electroweak measurements above the Z-pole

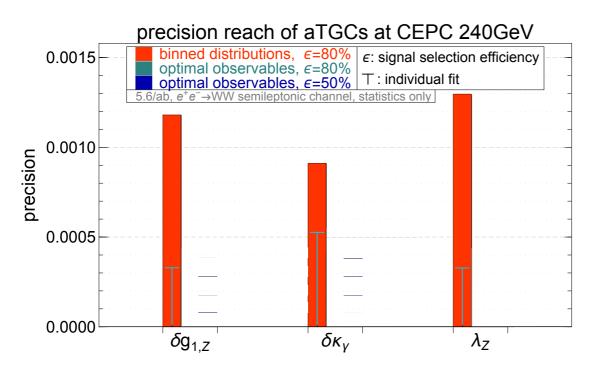
• **Snowmass 2021:** Can we also constrain all possible 4-fermion structures when departing from the oblique assumptions?

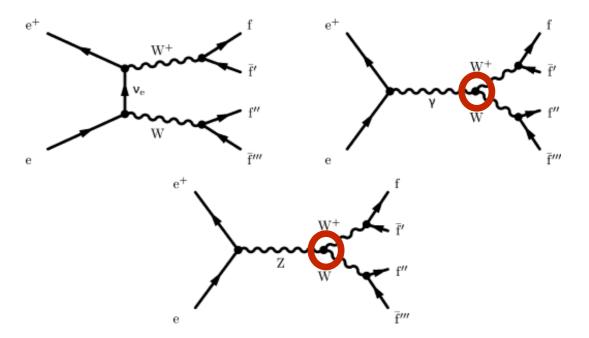
 $\begin{array}{c|c} \psi^{2}\varphi^{2}D \\ \hline Q_{\varphi l}^{(1)} & (\varphi^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}\varphi)(\bar{l}_{p}\gamma^{\mu}l_{r}) \\ Q_{\varphi l}^{(3)} & (\varphi^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}^{I}\varphi)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r}) \\ Q_{\varphi e} & (\varphi^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r}) \\ Q_{\varphi q}^{(1)} & (\varphi^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r}) \\ Q_{\varphi q}^{(3)} & (\varphi^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}\varphi)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r}) \\ Q_{\varphi u} & (\varphi^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r}) \\ Q_{\varphi d} & (\varphi^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r}) \\ \end{array}$

_		$(\bar{L}L)(\bar{L}L)$	$(\bar{L}L)(\bar{R}R)$		
E	Q_{ll}	$(\bar{l}_p \gamma_\mu l_r)(\bar{l}_s \gamma^\mu l_t)$	Q_{le}	$(\bar{l}_p \gamma_\mu l_r)(\bar{e}_s \gamma^\mu e_t)$	
igh-/		$(\bar{R}R)(\bar{R}R)$	Q_{lu}	$(\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t)$	
t t	Q_{ee}	$(\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t)$	Q_{ld}	$(ar{l}_p\gamma_\mu l_r)(ar{d}_s\gamma^\mu d_t)$	
era	Q_{eu}	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(\bar{q}_p \gamma_\mu q_r)(\bar{e}_s \gamma^\mu e_t)$	
3ett	Q_{ed}	$(\bar{e}_p \gamma_\mu e_r)(\bar{d}_s \gamma^\mu d_t)$			

- Complementarity Circular/Linear Colliders: Use Z-pole measurements to keep Zff corrections under control/Benefit from high-E to constrain 4-fermion effects.
- Interplay with low-energy precision experiments? e.g. atomic parity violation
 Current APV measurement in Cs

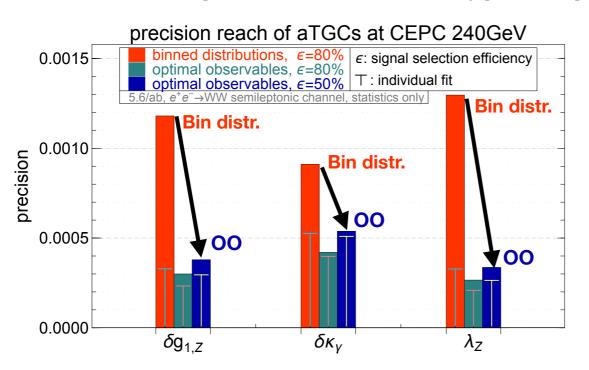
$$Q_W(^{133}_{78}{\rm Cs}) = -72.82 \pm 0.26_{\rm exp.} \pm 0.33_{\rm th.}$$
 Precise probe of $\it lq$ contact interactions 0.6% precision

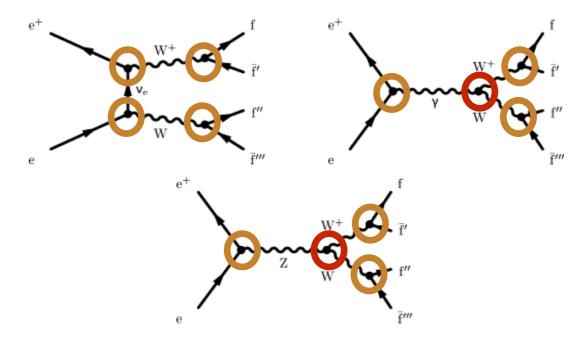

Complementarity with the "Rare processes and precision measurements" Frontier (in particular RF3)


EW Physics at Snowmass 2021

Multi-Boson processes

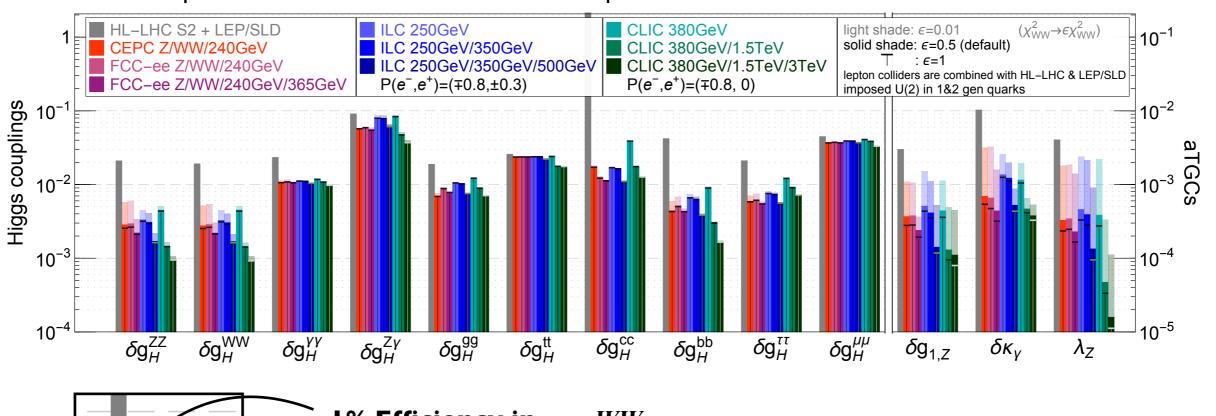
W+W- production at future lepton colliders

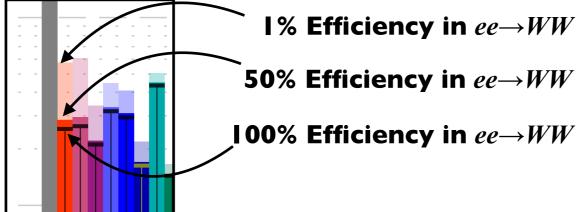

 EFT studies: Current projections based on sensitivity to aTGC ONLY in differential angular distributions (ignoring correlations between bins)



W+W- production at future lepton colliders

 EFT studies: Current projections based on sensitivity to aTGC ONLY in differential angular distributions (ignoring correlations between bins)





- In JHEP12 (2019) 117 we prepared a new sensitivity study using full info about each event in the formalism of "optimal statistical observables" (OO):
 - √ We consider all possible BSM deformations within the dim-6 SMEFT framework
 - √ Default method only accounts for statistical sensitivity
 - ⇒ Compensate omission of systematics via conservative selection efficiency €

EFT Higgs couplings and aTGC: dependence on e+e-→W+W- projections

precision reach with different assumptions on $e^+e^- \rightarrow WW$ measurements

Influence of the assumptions in the **OO** study of **WW** production in the extraction of **H** couplings & aTGC

What is the potential of the method in presence of "realistic" systematics (EXP/TH)?

Multi-boson processes, E-growth and Higgs couplings:

B. Henning, D. Lombardo, M. Riembau, F. Riva, PRL 123, 181801 (2019) (arXiv:1812.09299 [hep-ph]) $\kappa_{I} \qquad \mathcal{O}_{S} \qquad \kappa_{I} \qquad \mathcal{O}_{S} \qquad \mathcal{$

Multi-V probes of E-enhanced Higgs operators at hadron (lepton) colliders

$$\kappa_{t} \colon pp \to jt + V_{L}V'_{L}, \quad (e^{+}e^{-} \to ll + \{tbW_{L}, tbZ_{L}, ttW_{L}, ttZ_{L}\}),$$

$$\kappa_{\lambda} \colon pp \to jjh + V_{L}V'_{L}, \qquad (e^{+}e^{-} \to llhV_{L}V'_{L}),$$

$$pp \to jj + 4V_{L}, \qquad (e^{+}e^{-} \to ll4V_{L}),$$

$$\kappa_{\gamma\gamma,Z\gamma} \colon pp \to jj + V'V, \qquad (e^{+}e^{-} \to llV'V),$$

$$\kappa_{V} \colon pp \to jj + V_{L}V'_{L}, \qquad (e^{+}e^{-} \to llV_{L}V'_{L}),$$

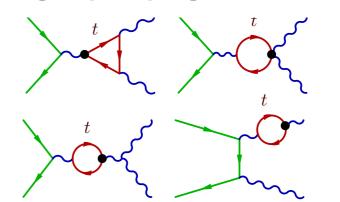
$$\kappa_{q} \colon pp \to W^{+}_{L}W^{-}_{L}, Z_{L}Z_{L}, \qquad (e^{+}e^{-} \to lljj),$$

- In general, multi-boson processes (including VBS) not included in ESU 2020 studies.
 What is the potential of this type of complementary probes of h couplings?
 - ✓ Some studies available in CLICYRs (arXiv: 1812.02093[hep-ph]).
 - ✓ See also A. Costantini et al. arXiv: 2005.10289 [hep-ph] for VBF/VBS at muon colliders
- Include also differential info in WZ, Wh, WW,... at 100 TeV hadron colliders. See, e.g., recent study of Wh in F. Bishara et al., JHEP 07 (2020) 075 (arXiv: 2004.06122 [hep-ph].

EW Physics at Snowmass 2021

Interplay with other frontiers

Interplay between EW/Higgs/Top

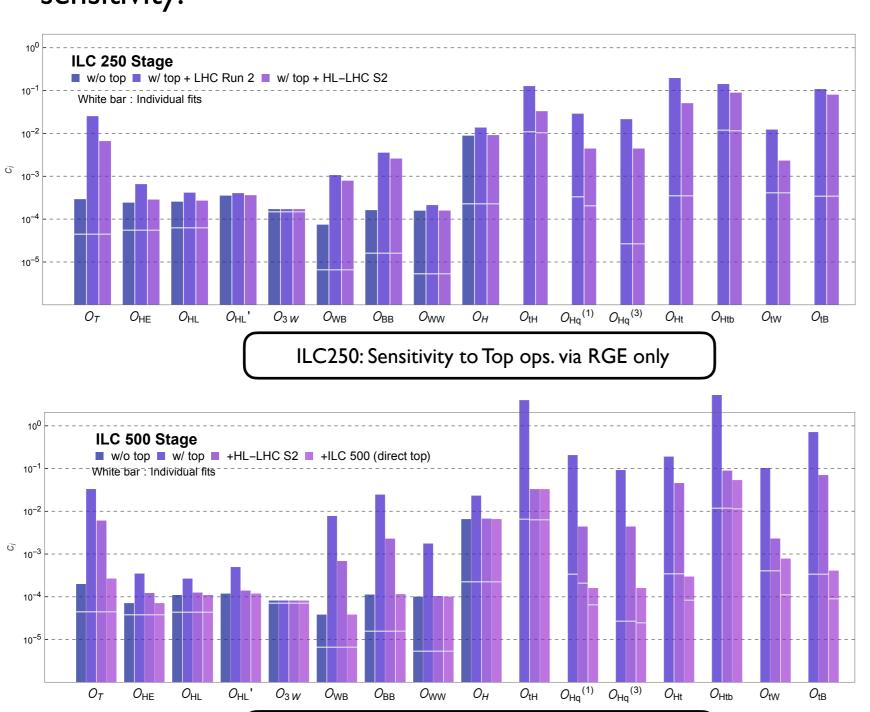

ESU 2020 studies used simplified assumptions to study the Top Sector, ignoring:

$$\begin{split} & \begin{array}{l} \overset{\bullet}{\text{O}} & O_{tW} = (\bar{Q}\sigma^{\mu\nu}\tau^It)\,\tilde{\varphi}W^I_{\mu\nu} + h.c., \\ & O_{tB} = (\bar{Q}\sigma^{\mu\nu}t)\,\tilde{\varphi}B_{\mu\nu} + h.c., \\ & O_{tG} = (\bar{Q}\sigma^{\mu\nu}T^At)\,\tilde{\varphi}G^A_{\mu\nu} + h.c.. \end{split}$$

Contribute to

tt, tth, ttV processes

- A task for the Snowmass 2021 studies should be to incorporate these effects, and study in a precise way the interplay between the EW/Higgs/Top measurements. For instance:
 - ✓ At NLO Top effects can generate sizable effects in EW/Higgs data:



e.g. Top couplings in $e^+e^- \rightarrow W^+W^-$

✓ Similar to what has been done to obtain indirect sensitivity to Higgs trilinear using single-H processes, these NLO effects can be used to obtain info from the Top below threshold \Rightarrow Complementary probe to effects in direct tt production

Interplay between EW/Higgs/Top

 NLO Top effects can generate sizable effects in EW/H data, providing indirect sensitivity:

ILC250 +500: Adding tt production

S. Jung, J. Lee, M. Perelló, J. Tian, M. Vos, arXiv:2006.14631 [hep-ph]

Restricted to Top operators involving also H.

What is required to close a fully global EFT analysis?

What can be achieved at Circular Colliders? Complementarity?

See also

G. Durieux et al., JHEP 12 (2019) 098 (arXiv:1907.10619 [hep-ph]

Questions on the theory assumptions

Relevant for BSM interpretations/frontiers

- What is the impact of the theory assumptions made in the ESU2020 studies:
 - √ Impact of NLO corrections: for recent studies, see e.g.

```
C. Hartmann, M. Trott,
Phys.Rev.Lett. 115 (2015) 19, 191801, arXiv:1507.03568 [hep-ph]
C. Hartmann, W. Shepherd, M. Trott,
JHEP 03 (2017) 060, arXiv:1611.09879 [hep-ph]

S. Dawson, P.P. Giardino,
Phys.Rev.D 97 (2018) 9, 093003, arXiv:1801.01136 [hep-ph]
Phys.Rev.D 98 (2018) 9, 095005, arXiv:1807.11504 [hep-ph]
Phys.Rev.D 101 (2020) 1, 013001, arXiv:1909.02000 [hep-ph]
```

- In general, $\sim O(10\%)$ modifications if constrained at tree level
- Gives access to more operators/effects
- ▶ But also open flat directions \Rightarrow Need more observables to close a global fit
- ✓ Impact of $(\dim 6)^2$, dim 8, ... terms:
 - More relevant in E-enchanced effects? (ILC I TeV, CLIC 3TeV)
 - Validity of EFT description
 - Gives access to more effects, e.g. RH CC in W processes

Questions on the theory assumptions

Relevant for BSM interpretations/frontiers

- What is the impact of the theory assumptions made in the ESU2020 studies:
 - √ Flavour assumptions: ESU2020 assumed neutral diagonal non-universal flavor assumptions:

$$\left[Y_fY_f^\dagger,C_{\phi f}
ight]=0,\;\;\left[Y_f^\dagger Y_f,C_{\phi f}^{(1),(3)}
ight]=0,\;\;\left[Y_f,C_{f\phi}
ight]=0,\;\;\ldots\;\;$$
 where, e.g. $egin{align*} \mathcal{O}_{\phi u}=\left(\phi^\dagger iD_\mu\phi
ight)\overline{u}_R\gamma^\mu u_R \ \mathcal{O}_{d\phi}=\left(\phi^\dagger\phi
ight)\overline{q}_L\phi d_R \ \end{pmatrix}$

Alignment pattern rather contrived from BSM point of view/interpretation ⇒ Relax + combine with flavor projections?

 \Rightarrow How far can we go away from fermion universality w/o the above conditions?

- Is the SMEFT formalism the right approach? → Higgs/EW Effective Field Theory (HEFT)
 - ✓ More general structure of couplings (non-linear EWSB breaks TH correlations)
 - ✓ Cut-off $O(4\pi v)$ ~3 TeV
 - √ How far can we go in constraining the HEFT?
 - √ To what extent we can test which one is the right eff. description of EWSB?

Summary

- The European Strategy Update 2020 EW/Higgs studies provided a solid first step towards comparing the capabilities (and complementarities) of the different future collider projects in the Energy frontier in a realistic way.
- These studies were nevertheless limited in their nature by the official inputs available from the different FC groups, as well as by the TH assumptions needed for a coherent comparison of the different machines.
- These limitations provide a stepping stone for more complete studies to be done within the Snowmass 2021 process:
 - ✓ In this talk I reviewed a few points for improvement wrt. ESU2020, from the point of view of EW physics.
 - ✓ Much more can be done! (See also talk by C. Grojean at EF01 kickoff meeting for extended list covering also Higgs topics.)
- Clean separation between frontiers (EW, Higgs, Top, ...), while useful, is not completely possible from the point of view of assessing the sensitivity to general BSM effects. Interaction between them is needed to obtain a global picture of the capabilities of future colliders!